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ABSTRACT

This paper presents a framework that has been developed for
automatic activity recognition and domestic behavior monitoring,
towards supporting elderly MCI patients in their daily domestic
life. Our framework’s infrastructure consists of a network of
smart-home sensors and RGB-D cameras that can be adapted and
be unobtrusively installed in a variety of indoor living areas,
collecting data relative to the human’s movement and the state of
the home environment. User activities and behavior are then
assessed through machine learning algorithms applied on these
data. The developed framework has been applied in real house
settings and extensive analysis has been performed, so as to
investigate how human activity and behavior monitoring needs, in
the scope of ICT solutions for supporting active and healthy
ageing of MCI patients, can be covered in the scope of
corresponding service robot applications.
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1. INTRODUCTION

The continuous improvement of living conditions and the
subsequent increase in life expectancy during the last few
decades, has led to the gradual aging of the world population,
resulting in the significant rise of age-related health issues.
Medical conditions affecting a person’s cognitive abilities, such as
Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD),
have been proven to lead to functional limitations and
impairments in daily life [1][2], while severely affecting an
individual’s ability to execute everyday tasks and activities. As a
result, the research community has turned its attention towards the
area of active and healthy ageing, aiming to support the
independent living of MCI patients. Moreover, the major
advances of recent years in the area of smart-home technologies,
have shifted the focus towards living lab designs capable of
monitoring the domestic behavior of MCI residents, and
supporting their well-being through activity-specific interventions.

Towards activity detection through home state environment
monitoring, state-change sensor networks have been extensively
examined in the past [3]. In [4] the authors analyzed how the
number of the smart-home sensors affects the detection accuracy,
concluding that a small set of strategically installed sensors can
outperform large-scale sensor networks. The issue of fusing
information from heterogeneous sensors was tackled in [5], while
[6] presented an extensive analysis of the effectiveness of the use
of ambient sensors within the scope of activity detection. In
addition to smart-home sensor-based designs, various approaches
based on the person’s movement within the house have been
proposed. In [7], PIR sensors were used to record the occupant’s
movement, while in [8][9] RGB cameras were utilized towards
activity recognition. Moreover, the emergence of low cost RBG-D
sensors has led to approaches combining color and depth image
features towards computer vision —based activity recognition
[10][11]. Efforts have also been made in order to achieve human
monitoring and support through the use of sensors mounted on
mobile robotic platforms [12] instead of fixed house-wide
installations.

Although domestic behavior monitoring has been proven to be
feasible and effective in controlled lab environments, several
problems arise when trying a similar approach in real home



environments. Smart-home sensors and cameras are rarely
available in real apartments, while installing such units requires
major, and often obtrusive, alterations in the house’s interior
layout and are usually dismissed by the residents. Small mobile
robotic platforms, on the other hand, can provide an alternative
approach, as they do not require any prior modifications in the
house and can be easily installed without any need for major
hardware customization. Moreover, their size and ability to
interact with the human, can offer a less invasive, companion-like
experience. The current work follows this line, presenting a living
lab infrastructure for automatic domestic behavior monitoring and
activity detection for elderly MCI patients, aiming to investigate
the monitoring needs and challenges of porting such an
infrastructure within the scope of service robot applications.

The paper is structured as follows: section 2 presents the design of
the preliminary living lab infrastructure, section 3 describes its
experimental application in real home environments, section 4
describes the analysis that was performed towards the
development of an equivalent human activity monitoring platform
based on a mobile service robot and section 5 includes
information about the acceptance level of the infrastructure by the
elderly.

2. LIVING LAB INFRASTRUCTURE

The design of the living lab infrastructure was dictated mainly by
the activities that had to be recognized: cooking, eating, dish-
washing, sleeping, watching TV and personal hygiene. These
activities, also known as Instrumental Activities of Daily Living
(IADLs) [13], have been proven to be effective towards
evaluating cognitive ability and detecting MCI in elders [1]. The
collected data had to provide strong indications about the
executed activity, while simultaneously protecting the privacy of
the user. As a result, a set of main household objects was defined
for each activity (i.e. watching tv — TV, cooking — stove, sleeping
- bed etc.), whose working state would provide the main
indication for the execution of the activity. Similarly, a set of
secondary objects, related to the room that the activity was usually
executed (i.e. cooking — lights in kitchen), was also defined,
further supporting the activity recognition process. Moreover,
based on the work of [14], it was decided for all the activities to
incorporate vision-based information extracted from the user's
silhouette, including his/hers location, body posture and upper
body activity level. Taking into consideration these monitoring
requirements, a set of monitored features for each activity was
defined, using both the sensor-based and vision-based data
collection modalities. A detailed description of these features is
presented in Table 1 and Table 2.

The whole system had to be adaptive, in order to allow easy and
relatively unobtrusive installation in diverse apartments. Towards
meeting these requirements, it was decided to use a network of
small-form-factor smart-home sensors along with RGB-D
cameras in order to extract information relative to the home
environment state and the state of the monitored human.

The smart-home sensors network consisted of ambient sensors
which provided information about the environmental conditions
around points of interest within the house (i.e. temperature at
stove) and the relative position of objects of interest (i.e. fridge
door open / closed), based on the activity specific features defined
above. It should be noted that a major factor driving the selection
of our infrastructure’s sensors was to minimize the interventions
that would be necessary in order to install the framework in
different house environments. In this scope, our framework was

for instance capable to monitor the operating state of the user’s
oven, while the exact sensor used to this end could differ among
different house setups. Indicatively, either an AC sensor was used
when the power line of the oven was easy to reach, or a
temperature sensor near the oven otherwise, while different
sensors were used for different tap types. Overall, a series of
alternatives for monitoring the same characteristics of the
environment were prepared, so as to allow us to easily monitor the
same environment attributes through different setups, with the
minimum needed interventions.

Table 1. Sensor-based activity-specific monitored features

e SLEEPING

Bed state Person is on/off the bed

Bedroom lights state Lights in the bedroom are turned on/off
TV state TV is turned on/off

Other lights state Lights in other rooms are turned on/off
e PERSONAL HYGIENE

Bathroom lights state | Lights in the bathroom are turned on/off

Bathtub state Water in the bathtub is/is not running

Water in the bathroom sink is/is not

Sink state .
running

e WATCHING TV

TV state TV is turned on/off

TV remote controller | Frequency of channel changes through

state the remote controller

TV room lights state Lights in the room of the TV are turned
on/off

Other lights state Lights in other rooms are turned on/off
e COOKING / DISHWASHING / EATING

Stove state The stove is turned on/off
Kitchen lights state Lights in the kitchen are turned on/off

Other lights state Lights in other rooms are turned on/off

Water in the kitchen sink is/is not

Sink state .
running

Cupboard/fridge Frequency of cupboard and fridge doors

doors state opening/closing

TV state TV is turned on/off

Table 2. Vision-based monitored features

Location Person’s location in the monitoring area

Body posture Standing / Bending / Sitting / Lying
Head - Hand distance

Upper body geometry = Hands distance

Head — Shoulder — Hand angle

The heterogeneity of the available sensing units of our
infrastructure allowed the installation of the sensor network in
different apartments, as the data collection process was
independent of the monitoring space layout. For the
implementation of the infrastructure, Phidgets1 sensors were
selected, as they provided a large variety of small-form-factor
sensors, along with a comprehensive API which simplified the
data collection process. Table 3 outlines the smart-home sensors
that were used, along with their position and measured variables,
while Figure 1 presents an indicative sensor setup in a real
apartment.

! http://www.phidgets.com/



Corridor
CAM|
Living Room a;%
04" Kitchen
fridge:
o L Bathroom L
1ab == A L
sink
PC %3 PTL | couch
sink LT
bathtub|
T AC w
stove we IR

H Humidity LT TVLight  PT Tap Proximity IR IR Receptor CAM  Camera

PC Cupboard

L Room Light AC AC Ay
Proximity

T Temperature

Figure 1. Indicative sensor setup in apartment

Table 3. Set of sensors used for monitoring the home
environment state

Sensor type Position Measurement
Temperature Near stove Local ambient
temperature
e . Local ambient
Humidity Inside bathroom relevant humidity
. Inside each room, near . .
Light (I) the main light source Ambient luminance
. Luminance of the
Light (II) On TV Screen TV screen
On supply cord of RMS value of the
AC Current Pply c¢ appliance’s AC
electric appliances
current
Accelerometer | On tap handle Tap state (open /
close)
Proximity () On cupboard/fridge Door state (open /
door close)
Proximity (II) On round tap handle Tap state (open /
close)
IR Receiver Next to TV IR TV codes sent
by the remote
Pressure Under the bed’s Pressure on the bed
mattress

For tracking the human within the house and extracting silhouette-
based information, a network of interconnected low-cost RGB-D
cameras (Microsoft Kinect vl & v2%) was utilized. Each room was
monitored using one or two cameras, depending on the room’s
dimensions, which were installed close to the ceiling, in order to
maximize the cameras’ field of view. The RGB-D cameras were
calibrated with reference to the top-down layout of the apartment
and were able to track the human in real time, provide her/his
exact position within the monitoring area and extract information
on body posture and relative body movement. In order to protect
the person’s privacy, only the depth stream of the cameras was
utilized, while the RGB data were discarded. Moreover, some
areas (bathroom, bedroom) were excluded from monitoring in
order to reduce the obtrusiveness of the system and offer the
human a private safe space.

2 https:/dev.windows.com/en-us/kinect

Both the smart-home sensors and the RGB-D cameras were
controlled by small-factor PCs, which were installed within the
house and were connected to a secure local network. One of the
PCs was selected as an aggregator PC while the rest were
designated as client PCs. Each client PC would collect the raw
data provided by the sensors and cameras connected to it, and
would transfer it to the aggregator PC were they were stored
locally. The data collection process was fully automated and was
active for 20 hours per day. During the night, while there was no
activity detected in the monitoring areas, the data collection would
stop in order for the aggregator PC to analyze all the recorded
sensor and trajectory data, perform activity detection and extract
the activity-related information. Once the activity detection
process was complete, the data recording process would restart
automatically. An overview of the data collection setup is
presented in Figure 2.
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Figure 2. Overview of the data collection network

3. INFRASTRUCTURE APPLICATION IN
REAL HOME ENVIRONMENTS

In order to test and evaluate the proposed infrastructure, four pilot
experiments were performed in the apartments of single elderly
MCI patients. The main goal of the experiments was to investigate
and define the monitoring needs for detecting and recognizing
ADLs of interest such as cooking, dish-washing, eating, sleeping,
personal hygiene, watching TV, as they were executed by the
residents. Moreover, the pilots contributed towards streamlining
the installation process, while reducing the obtrusiveness of the
system. It should be noted that, in order to ensure the residents’
privacy, depth cameras were not installed in personal areas of the
house, such as the bedroom and the bathroom, while any sensors
deemed obtrusive by the residents, were also removed.

The first pilot was set up in a 90m® apartment. Five RGB-D
cameras, monitoring three areas (living room, corridor, kitchen),
and 14 sensors were installed. The resident was a 74 year old
female MCI patient and data was collected for 15 days.

The second pilot was set up in a 60m” apartment. Three RGB-D
cameras, monitoring three areas (living room, corridor, kitchen),
and 13 sensors were installed. The resident was an 83 year old
female MCI patient and data was collected for 8 days.

The third pilot was set up in a 50m’ apartment. Two RGB-D
cameras, monitoring two areas (living room, kitchen), and 11



sensors were installed. The resident was a 68 year old female MCI
patient and data was collected for 7 days.

The fourth and final pilot was set up in a 90m* apartment. Three
RGB-D cameras, monitoring two areas (corridor, kitchen), and 13
sensors were installed. The resident was an 80 year old female
MCI patient and data was collected for 8 days. Figure 3 presents
the design of the apartments used in these pilot installations.
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Figure 3. The four apartments of the pilot experiments

The home environment state data collected from the smart-home
sensors network, and the human tracking data collected from the
RGB-D cameras were both used in order to evaluate the
infrastructure’s potential towards effective activity detection. By
employing HMMs to model human trajectories during the
monitored ADLs, and by using their output as input to SVMs,
along with features extracted from the smart-home sensors data,
we achieved average precision and recall rates above 80% when
using only sensor or tracking data. Meanwhile, the fusion of both
data modalities increased the average precision rate to over 90%
[15]. Additionally, in order to test the activity detection potential
of a sensor-less infrastructure design, an HCRF-based approach
was employed, using only the vision-based features described in
section 2. Specifically, HCRFs were used to detect user activities,
utilizing data sequences extracted from the occupant’s movement,
body posture and upper-body geometry, leading to a precision rate
0f90.5% [16].

The high detection rates achieved in the pilot applications,
demonstrated the effectiveness of the developed infrastructure, as
well as the activity detection potential of vision-only methods that
can be used when smart-home sensors are not available.

4. ACTIVITY MONITORING NEEDS IN
SERVICE ROBOT APPLICATIONS

The main goal of the presented work was to investigate the
activity monitoring needs and understand differences and
problems that arise when trying to transfer the capabilities of such
an infrastructure, in the scope of robotic applications, specifically
on service robots that are designated to monitor and support MCI
patients at home, being thus in need of user activity and behavior
monit}oring and assessment, as in the case of RAMCIP service
robot”.

3 http://www.ramcip-project.eu/ramcip/

Since smart-home sensors and statically mounted RGB-D cameras
are not available in the majority of apartments, and taking into
consideration the fact that any major alterations within the house
(sensors installation, PCs, cameras etc.) should be avoided, as
they may have a negative impact on the emotional state of the
patients, it becomes apparent that a series of problems must be
overcome in order to fulfill the activity monitoring needs using a
robotic platform.

One major issue arises from the lack of a smart-home sensor
network within the house. Since the robotic platform is usually
equipped only with a RGB-D camera, the home environment state
recognition must be achieved through vision-based techniques. In
order to extract the activity-specific monitoring features presented
in Table 1, the working state of all the main and secondary
activity-related household objects, described in section 2, must be
detected. For objects/appliances operated using knobs or handles
(stove, kitchen/bathroom sink), the working state can be
recognized by detecting the state of the controlling knob. Through
RGB-based object recognition, utilizing a latent SVM [17], the
handle is located within the camera view, and its relative rotation
provides information about the state of the appliance. A similar
approach is employed for appliances that use remote controllers.
The controlling unit is recognized within the scene through an
RGB-D based small object detection algorithm [18], and the
user’s interaction with it is used to infer the appliance’s state. For
objects with large movable parts (fridge, cupboards), custom 3D
articulated models are utilized [19] in order to calculate the
position of the movable part relative to the main body of the
object. Appliances that provide major optical cues regarding their
operating state (TV, room lights) can be easily handled through
thresholding-based approaches. Finally, the use of large furniture,
specifically the sofa, armchairs and the kitchen table, is infered by
taking into consideration the occupant’s position relative to the
furniture and his body posture. For example, if a person is located
on or in very close proximity to the sofa and his body posture is
detected as “sitting”, then the sofa is considered “in use”.

Figure 4. RGB-D camera viewpoint: Top — wall-mounted
fixed camera, bottom - robot-mounted camera



Another challenging aspect of the adaptation of the monitoring
infrastructure to a service robot application is the selection of a
suitable viewpoint depending on the task in hand. In the
infrastructure described in section 2, the RGB-D cameras were
installed around the apartment, on relatively high positions,
ensuring the coverage of all the monitoring areas, while also
minimizing any potential occlusions due to obstacles in the
camera FOV. On the other hand, the single, low-height camera
viewpoint of a robotic platform (Figure 4), offers a limited partial
view of the monitoring space, making it necessary to employ an
autonomous navigation strategy in order to achieve optimal
camera viewpoints during each task. Since the apartment set up
and the areas relative to each activity are known beforehand, the
robot is provided with a set of predetermined monitoring
positions, called “parking positions”, which offer the best possible
field of view for each activity [20]. Similarly, a set of parking
positions is provided for each activity-related household object
(either the object itself or the surface that supports it, i.e. kitchen
table, coffee table etc.), in order to maximize the object
recognition accuracy. A list of the defined parking positions along
with a short description is presented in Table 4, while a set of
indicative parking positions for kitchen-related activities is
presented in Figure 5.

Table 4. Detailed list of parking positions within a typical

apartment
e AREAS
- Overall view of the sofa, armchairs, TV and
Living room
coffee table
Kitchen Overall view of stove, sink, kitchen table,
fridge and kitchen cupboards
e SURFACES
Kitchen table Close up view of the surface in order to
Coffee table recognize and interact with objects placed
Kitchen deck on it
e OBJECTS
. Close up view of the object in order to
Fridge . o .
recognize the position of its movable part
Cupboards : Sy
and interact with it
Stove Close up view of the object in order to
Sink recognize its working state and change it if
TV necessary
Sofa Close up view of the object in order to
Armchairs interact with human using it
Light switches Close up view of the switch in order to
interact with it

Finally, in order to achieve efficient robot navigation within the
house, when moving between parking spots or following the
human, a detailed map of the apartment is utilized to generate an
optimal trajectory between the start and end point [20].
Simultaneously, a local obstacle detector is used to alter the
trajectory in real time, so as to avoid any obstacles not present in
the map, while also updating the map with the newly discovered
obstacles. Moreover, as it is very important to make sure that the
robot will not obstruct the occupant when moving around the
house or performing everyday tasks, the trajectory planner takes
into consideration the position and movement pattern of the
human, and further alters the generated trajectory, ensuring that
the robot will not violate the human’s personal space, unless
explicitly asked to do so (i.e. hand over an object).

Kitchen

° ‘e
Figure 5. Indicative parking positions: A - Parking position

for cooking monitoring, B1,2 — Parking positions for detection
of objects on the kitchen table

The techniques described above offer feasible solutions to the
challenges presented by a vision-only mobile platform design.
However, they also pose an important problem that has to be
tackled: Vision-based identification algorithms tend to be
computationally intensive, as the identification process usually
includes the point-by-point comparison of the viewed object with
a large database of similar objects, leading to longer execution
times and higher energy consumption, two features that are
incompatible with an autonomous and responsive robotic platform
design. In order to overcome these obstacles, a hierarchical
approach is used towards the execution of the various vision
algorithms. Tasks with lower processing needs, such as robot
navigation and human localization, are given a high priority and
are executed continuously. On the other hand, computationally
intensive algorithms, which usually include the initial object
identification tasks, are given a lower priority and are executed on
demand, when deemed necessary depending on the task in hand. It
becomes clear that a tradeoff between accuracy and processing
speed is unavoidable, making it necessary to find a balance
between these two aspects in order to fulfil the activity monitoring
requirements.

5. INFRASTRUCTURE ACCEPTANCE

The seniors that participated in the pilot experiments showed, in
general, a positive attitude towards the installation of the
infrastructure in their residences, as they comprehended that it
was a tool aiming to improve their quality of life. Before the
equipment setup, each participant was given a thorough briefing
on the experiment’s goals and the installation process. Focus was
given on the voluntary nature of the experiments, and it was
clearly stated that the participants could forfeit the experiments at
any time without any implications. A short live demonstration of
both the depth cameras and the smart home sensors was also
given, pointing out to the privacy-preserving nature of the data
collected. These features, along with the inclusion of non-
monitored private areas, such as the bedroom and bathroom,
helped to overcome any hesitations that the participants may
initially have had, leading to a high acceptance level of the
infrastructure, as we did not receive any requests for equipment
removal or monitoring interruption during the pilot experiments.
However, some of the participants noted that they were hesitant to
have guests during the experiments, as they were afraid that the
presence of the monitoring equipment and their participation, in
general, in a mental health-related experiment could create
misconceptions about their mental health in their social circle.

Following the conclusion of the monitoring experiments, the
participants were also introduced to an initial simplified version of
a monitoring service robot (Figure 6) within their houses, and



were asked to execute a few predetermined short activity-related
scenarios while being monitored by it. The robot was radio-
controlled by a human operator and would move and interact with
its environment in a manner similar to the autonomous navigation
scheme described in section 4. The goal was to capture the initial
reactions of the elderly towards the robotic platform and integrate
their feedback in the robot design process. The small robotic
platform was generally well received by the participants. Its small
size and responsive nature gave the impression of a smart gadget-
like assistant, rather than a surveillance system, which all the
participants agreed they would feel comfortable to have in their
house, whether they were alone or had guests.

Ty ;;/_. A

Figure 6. Initial version of the service robot used for
demonstration

6. CONCLUSIONS

In this paper, an adaptive living lab infrastructure design was
presented. The main goal of this work was to evaluate the
infrastructure’s efficiency in the scope of domestic behavior
monitoring, while simultaneously addressing the technical issues
that arise when trying to adapt the sensor/camera-based design to
the constraints of a vision-only based robotic service platform.
The experimental results presented in section 3 validate the
activity detection effectiveness of the proposed infrastructure.
Moreover, the computer vision techniques described in section 4
offer robust solutions to the limitations presented by the robotic
platform design, enhancing the feasibility of such a design in the
scope of activity detection and behavior monitoring. The next
steps include the implementation and experimental evaluation of
the robot service application, in order to test and further improve
the proposed approach, as well as examine the hardware
processing limitations in various environments.
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